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Abstract
We determine conditions for the quantization of graphs using the Dirac operator
for both two- and four-component spinors. According to the Bohigas–
Giannoni–Schmit conjecture for such systems with time-reversal symmetry
the energy level statistics are expected, in the semiclassical limit, to correspond
to those of random matrices from the Gaussian symplectic ensemble. This is
confirmed by numerical investigation. The scattering matrix used to formulate
the quantization condition is found to be independent of the type of spinor. We
derive an exact trace formula for the spectrum and use this to investigate the
form factor in the diagonal approximation.

PACS numbers: 05.45.Mt, 03.65.Pm, 03.65.Sq

1. Introduction

Quantum graphs have proved an important model in the semiclassical study of systems whose
classical analogues are chaotic [16, 17]. Much work in this field concerns the conjecture of
Bohigas et al [6] which connects statistics of the energy level spectrum to those of random
matrices, the ensemble of random matrices depending on the symmetries of the system. For
systems with no time-reversal symmetry statistics of the Gaussian unitary ensemble (GUE)
are expected whereas those of the Gaussian orthogonal (GOE) or symplectic (GSE) ensemble
should apply for systems with time-reversal symmetry, depending on whether the spin is
integer or half integer, respectively. Most investigations of this conjecture have concentrated
on systems with spin zero and there are few examples of systems whose energy level statistics
follow the GSE prediction [11, 14, 19–21]. In line with this the usual graph quantization
applies the Schrödinger operator to a metric graph, finding energy level statistics of the GOE
or GUE [16, 17].

It is our aim to develop a quantization of graphs including half integer spin and we expect
to observe spectral statistics following the GSE when time-reversal symmetry is present. We
choose a Dirac operator that we realize as a self-adjoint operator on an appropriate Hilbert
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space. The Dirac operator on a graph was considered previously by Bulla and Trenkler [10] as
an alternative model of a simple scattering system, however, without addressing the problem
of time-reversal invariance. Instead we take closed graphs and find boundary conditions that
ensure a self-adjoint realization of the Dirac operator such that time-reversal symmetry is
preserved. By looking at systems of this type we can compare the spectrum with the results
for the Schrödinger operator on graphs and general semiclassical results for systems with
spin. One well-known advantage of the quantum graph is that the trace formula is exact rather
than semiclassical. This provides the opportunity to distinguish features present only in the
semiclassical limit from those inherent in systems with spin.

One unusual quality of the Dirac operator in one dimension is the possibility of two-
component spinors rather than the usual four-component spinors required in three dimensions.
Physically this appears odd. If the Dirac operator on the graph describes an idealization of a
physical system of wires in the limit that the width of the wire tends to zero we are lead to
four-component spinors of the type required in three dimensions. If however we set up the
mathematical problem in which the graph is a topological entity then it is natural to choose
two-component spinors. In the context of quantizing graphs the apparent contradiction will
in fact disappear. The spectrum is independent of the choice of spinors so the physics of the
system cannot distinguish the language used to describe it.

Our paper is organized as follows: In section 2 we introduce the necessary terminology
of graphs. Section 3 sets out the two approaches to the Dirac operator in one dimension,
restricting from the Dirac equation in three dimensions which leads to four-component
spinors or considering an irreducible representation of the Dirac algebra which requires only
spinors with two components. In section 4 we find self-adjoint and time-reversal symmetric
realizations of the Dirac operator for two-component spinors and in section 5 we do the same
in the four-component case. Numerical examples confirm that even for simple graphs the
energy level statistics follow the GSE prediction. We find that the scattering matrix in both
formalisms has the same properties, the spectrum is therefore independent of the approach
taken. In section 6 we first derive the exact trace formula for the density of states and then
use this to calculate the form factor. Making the diagonal approximation we see that the form
factor agrees with the GSE result for low τ . Finally we suggest how the recipe for quantizing
a graph with the Dirac operator is consistent with the model of a graph as a three-dimensional
system of wires in section 7.

2. Graphs

We begin with a few general definitions necessary when considering graphs. A graph consists
of V vertices connected by B bonds. The valency vi of a vertex i is the number of bonds
meeting at the vertex. The topology of a graph can be described using its connectivity matrix
C. This is a V × V matrix with entries

Cij :=
{

1 if vertices i and j are connected

0 otherwise
(2.1)

where we have assumed that the graph has at most one bond connecting any pair of vertices.
We also suppose the graphs under consideration to be connected, any vertex can be reached
from any other by passing down bonds. A graph is directed if the bonds are assigned directions:
a bond running from vertex i to vertex j will be denoted as b = (ij).

On a graph one usually considers probabilistic rather than deterministic classical
dynamics. This can be described by a stochastic matrix M of transition probabilities between
the bonds. The matrix M = (Mbc) defines a Markov chain on the graph propagating vectors
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ρ = (ρ1, . . . , ρ2B)T of probabilities assigned to the bonds, ρ �→ Mρ. Note that we allow
particles to move in either direction on a bond and so there are 2B possible states of the particle
on the graph. (This convention for counting bonds will prove necessary later as plane-wave
solutions for the Dirac operator cannot be made to correspond to the directions on a directed
graph as in the Schrödinger case.) The non-negative matrix M is called irreducible if for every
pair (b, c) of states there exists a power q such that (Mq)bc > 0. If the power q can be chosen
independent of (b, c), such that all elements of the matrix Mq are strictly positive, M is called
primitive. The quantum system on the graph is defined by a matrix T = (Tbc) of complex
transition amplitudes between the bonds (we will see that T is unitary) then

M(ij)(ki) = |T(ij)(ki)|2. (2.2)

M(ij)(ki) is the quantum mechanical probability that a particle travelling from k to i scatters at
i to travel towards the vertex j . The unitarity of T implies that M is doubly stochastic and
therefore defines a Markov chain.

A Markov chain with an irreducible and doubly stochastic Markov matrix M is ergodic, i.e.
any initial distribution ρ converges in average to the stable distribution ρ0 = 1

2B
(1, . . . , 1)T ,

lim
N→∞

1

N

N∑
n=1

Mnρ = ρ0. (2.3)

A Markov matrix corresponding to an ergodic chain has a non-degenerate eigenvalue one.
For primitive stochastic matrices all other eigenvalues are smaller in magnitude such that the
associated Markov process is mixing. Then an initial distribution converges to the stable
distribution

lim
n→∞ Mnρ = ρ0 (2.4)

and, moreover

lim
n→∞(Mn)bc = 1

2B
. (2.5)

It is this last condition that will be used in section 6.2 to evaluate the form factor in the diagonal
approximation. Details on non-negative matrices and Markov chains can be found in [12].

While only topological information is necessary to investigate classical dynamics on a
graph quantum mechanics requires us to assign lengths, L(ij), to bonds, (ij). This defines
a metric graph. It is natural to consider a bond with length as directed, one vertex lying at
zero on the bond and the other at L, consequently our metric graphs are also directed graphs.
In order to avoid degeneracies in the lengths of periodic orbits on the graph we assume the
lengths assigned to the bonds are incommensurate, not related by a rational number.

3. The Dirac equation in one dimension

In one spatial dimension the Dirac equation is

ih̄
∂

∂t
�(x, t) =

(
−ih̄cα

∂

∂x
+ mc2β

)
�(x, t) (3.1)

where α and β satisfy the relations α2 = β2 = I and αβ +βα = 0 that define the Dirac algebra.
There are two possible interpretations of this equation: either one views it as a restriction of
the Dirac equation in three dimensions, or one considers it as a problem in one dimension from
the outset. In the first case this equation originates from an implementation of the Poincaré
spacetime symmetries in relativistic quantum mechanics such that the notions of spin and of
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anti-particles can be carried over. If then, for instance, one restricts to the y axis the Dirac
matrices α = αy and β are Hermitian 4×4 matrices that form a reducible representation of the
Dirac algebra in one dimension. The second case is void of the physical interpretations deriving
from 3 + 1-dimensional spacetime symmetries. One merely considers the Dirac equation (3.1)
with a faithful irreducible representation of the Dirac algebra and thus chooses α and β to
be Hermitian 2 × 2 matrices. For an extensive discussion of the Dirac equation see [22].

The two cases are naturally connected as a unitary transformation of αy and β brings them
into block diagonal form preserving the algebraic relations. For example the standard (Dirac)
representation of the matrices in three dimensions, restricted to the y axis, is

α =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


 β =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (3.2)

Now consider the unitary transformation

U = 1√
2




1 1 0 0
0 0 −1 1

−1 1 0 0
0 0 1 1


 . (3.3)

Applying U to α and β generates a new representation

UαU−1 =




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 UβU−1 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 (3.4)

which is obviously reducible. Either of the 2 × 2 blocks represents the Dirac algebra in
one dimension irreducibly. It is, however, important to note that passing from the four-
dimensional to the two-dimensional representation the usual interpretations of spin, particles
and anti-particles, and time-reversal are lost.

For both two- and four-dimensional representations of the Dirac algebra the Dirac operator
reads

D := −ih̄cα
d

dx
+ mc2β. (3.5)

On the real line D is defined as an essentially self-adjoint operator on the Hilbert space
L2(R) ⊗ C

n with domain C∞
0 (R) ⊗ C

n, where n = 2 or n = 4.
In order to obtain self-adjoint realizations of the Dirac operator on a compact interval

I = [0, L] appropriate boundary conditions have to be specified. These can be classified
by extensions of the closed symmetric operator D0 given as D defined on the domain
W 0

2,1(I)⊗C
n ⊂ L2(I)⊗C

n. Here W 0
2,1(I) denotes the Sobolev space of functions ϕ on I that

are, along with their (generalized) first derivatives, in L2(I) and satisfy ϕ(0) = 0 = ϕ(L).
The closed symmetric extensions of D0 arise from restrictions of D defined on the domain
W2,1(I) ⊗ C

n of n-component Sobolev spinors with no specified boundary conditions to
subspaces on which the skew-Hermitian quadratic form

�(φ,ψ) := 〈Dφ,ψ〉 − 〈φ,Dψ〉 (3.6)

vanishes. The maximal isotropic subspaces of W2,1(I) ⊗ C
n with respect to �, i.e. the

maximal subspaces on which � vanishes, then yield domains on which D is self-adjoint.
This is the approach adopted by Kostrykin and Schrader for the Schrödinger operator [15] on
graphs. Self-adjoint realizations of the Dirac operator on an interval are also classified using
a different technique by Alonso and De Vincenzo [1].
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4. The Dirac operator for two-component spinors

From the two approaches to the problem we begin with the minimum necessary and consider
two-component spinors first. According to the above we take

α =
(

0 −i
i 0

)
β =

(
1 0
0 −1

)
. (4.1)

(The choice of α and β is designed to simplify the calculations.)
Eigenspinors ψ = (

ψ1

ψ2

)
of D are solutions of the time-independent Dirac equation

Dψ(x) = Eψ(x). (4.2)

For positive energies E they are hence plane waves of the form

ψk(x) = µ(k)

(
1

iγ (k)

)
eikx + µ̂(k)

(
1

−iγ (k)

)
e−ikx (4.3)

with k > 0 and

γ (k) := E − mc2

h̄ck
E =

√
(h̄ck)2 + m2c4. (4.4)

The choice of the coefficients µ(k) and µ̂(k) depends on the boundary conditions imposed by
the self-adjoint realization of D. We see immediately that the plane-wave spinor (4.3) is not
invariant changing x to −x. As the Dirac operator is first order the direction assigned to bonds
on the graph becomes significant.

4.1. Self-adjoint realizations on graphs

Self-adjoint realizations of the Dirac operator on graphs were considered by Bulla and Trenkler
[10]. However, in order to develop a simple form related to the vertex transition matrix, we
continue with the approach of Kostrykin and Schrader [15] for the Schrödinger operator.

The basic idea is to view a graph as a collection of intervals that are glued together
according to the connectivity matrix C. The Hilbert space on which the Dirac operator acts is
therefore the direct sum of the Hilbert spaces for each bond

H :=
B⊕

b=1

L2([0, Lb]) ⊗ C
2 (4.5)

where b runs over all bonds. The spinors ψ ∈ H therefore consist of the B components
(ψ1, . . . , ψB) attached to the bonds, each of which is a two-spinor. The scalar product of
spinors on the graph is then

〈φ,ψ〉 =
B∑

b=1

〈φb,ψb〉b (4.6)

where 〈φb,ψb〉b is the scalar product in L2([0, Lb]) ⊗ C
2. Self-adjoint realizations of D

are constructed in analogy to the case of a single interval by suitably extending the closed
symmetric operator D0 defined on the domain

B⊕
b=1

W 0
2,1([0, Lb]) ⊗ C

2. (4.7)

The domains of its closed symmetric extensions are the isotropic subspaces of
B⊕

b=1

W2,1([0, Lb]) ⊗ C
2 (4.8)
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...wi

wi +1

vi

2

1
...

Figure 1. An isolated vertex on which we wish to define the transition matrix.

with respect to the skew-Hermitian form � as given in (3.6). Integrating by parts yields

�(φ,ψ) = h̄c

B∑
b=1

(
ψb

1 (0)φ̄b
2(0) − ψb

1 (Lb)φ̄
b
2(Lb) − ψb

2 (0)φ̄b
1(0) + ψb

2 (Lb)φ̄
b
1(Lb)

)
(4.9)

showing that � only depends on the boundary values of the spinor components. Self-adjoint
extensions again correspond to maximally isotropic subspaces and thus can be characterized
by boundary conditions.

Following the construction of Kostrykin and Schrader [15] for Schrödinger operators
on graphs, we introduce a map from the infinite-dimensional Hilbert space H to the 4B-
dimensional space of boundary values, ψ �→ ψ = (

ψ1

ψ2

)
, with

ψ1 := (
ψ1

1 (0), . . . , ψB
1 (0), ψ1

1 (L1), . . . , ψ
B
1 (LB)

)T

(4.10)
ψ2 := (−ψ1

2 (0), . . . ,−ψB
2 (0), ψ1

2 (L1), . . . , ψ
B
2 (LB)

)T
.

By including ψ2(0) with a minus sign we can write � as

�(φ,ψ) = (
φ

†
1 φ

†
2

) (
0 I2B

−I2B 0

) (
ψ1

ψ2

)
. (4.11)

The maximal isotropic subspaces in (4.8) with respect to � are now equivalent to maximal
subspaces of vectors ψ ∈ C4B on which the complex symplectic form (4.11) vanishes.
Defining a linear subspace of C4B as the vectors ψ satisfying

Aψ1 + Bψ2 = 0 (4.12)

with complex 2B × 2B matrices A and B, one first observes that in order for this subspace
to have the desired dimension 2B the 2B × 4B matrix (A, B) must have maximal rank.
Kostrykin and Schrader show that such a subspace is maximally isotropic if and only if (A, B)

has maximal rank and AB
† is Hermitian.

Equation (4.12) defines boundary conditions for the Dirac operator on a collection of B
bonds. These boundary conditions yield a self-adjoint realization of D when

rank(A, B) = 2B and AB
† = BA

†. (4.13)

So far the connectivity of the graph has played no role. In order to implement this we
consider only boundary conditions, specified through the matrices A and B, that connect bonds
according to the connectivity matrix C. The matrices A and B then have a block structure,
each block defining boundary conditions at a single vertex.

At a given vertex i we label the vi bonds such that the first wi bonds are outgoing and

the remainder incoming, see figure 1. The vector ψ(i) = (ψ
(i)
1

ψ
(i)
2

) ∈ C
2vi of boundary values at i
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then consists of the components

ψ
(i)
1 = (

ψ1
1 (0), . . . , ψ

wi

1 (0), ψ
wi +1
1

(
Lwi+1

)
, . . . , ψ

vi

1

(
Lvi

))T

(4.14)
ψ

(i)
2 = (−ψ1

2 (0), . . . ,−ψ
wi

2 (0), ψ
wi +1
2

(
Lwi +1

)
, . . . , ψ

vi

2

(
Lvi

))T
.

If we denote the vi × vi blocks of the matrices A and B that define the boundary conditions at
i by A

(i) and B
(i), we have the condition

A
(i)ψ

(i)
1 + B

(i)ψ
(i)
2 = 0 with A

(i)
B

(i)† = B
(i)

A
(i)† (4.15)

which guarantees current conservation at the vertex i.
Eigenspinors ψ of the Dirac operator D with given boundary conditions are composed

of plane waves, equation (4.3), on each of the bonds. Assigning incoming and outgoing
plane-wave solutions to each of the bonds we can write down vectors of coefficients µ→,µ← for
the outgoing and incoming waves at the vertex, respectively:

µ
→ =




µ1

...

µwi

µ̂wi+1 e−ikLwi +1

...

µ̂vi e−ikLvi




µ
← =




µ̂1

...

µ̂wi

µwi+1 eikLwi +1

...

µvi eikLvi




. (4.16)

Here we omit the index i labelling the vertex. Writing ψ
(i)

1 and ψ
(i)

2 in terms of µ→ and µ← and
substituting into the definition of the boundary conditions we obtain

µ
→ = −(A(i) + iγ (k)B(i))−1(A(i) − iγ (k)B(i))µ

←
. (4.17)

Note that under the conditions given the matrices (A(i) ± iγ (k)B(i)) are always invertible [15].
This defines the vertex transition matrix T

(i) which connects the coefficients of incoming and
outgoing plane waves at the vertex i,

T
(i) := −(A(i) + iγ (k)B(i))−1(A(i) − iγ (k)B(i)). (4.18)

The condition that A
(i)

B
(i)† is Hermitian implies that the matrix T

(i) is unitary

(T(i))−1 = (T(i))†. (4.19)

Self-adjoint realizations of the Dirac operator on the graph are defined by matrices A, B with
AB

† Hermitian. These prescribe the boundary conditions (4.12) and determine unitary vertex
transition matrices (4.18) for plane waves on the graph.

4.2. Time-reversal symmetry

Following the conjecture of Bohigas et al [6], we expect to find energy level statistics
corresponding to those of the Gaussian symplectic ensemble (GSE) for quantum systems
with half-integer spin s and time-reversal symmetry. This is due to the fact that the time-
reversal operator is anti-unitary and squares to (−1)2s , imprinting a symplectic symmetry on
the Hamiltonian. In the case of a two-component Dirac equation in one dimension the usual
interpretations of spin and time-reversal inherited from three dimensions are lost. Nevertheless,
one can introduce an anti-unitary operator squaring to −1 that is formally identical to the time-
reversal operator for two-component (Pauli-) spinors in three dimensions

T :=
(

0 1
−1 0

)
K (4.20)
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where K is complex conjugation. This can be interpreted as a physical time-reversal in
the sense that it changes the sign of time and momentum. The matrix part of T is only
required in order that T 2 = −I as there is no spin operator for two-component spinors. In the
subsequent work we will therefore refer to (4.20) as a time-reversal operator. A full discussion
of time-reversal symmetry with spin is found in the second chapter of [13].

We now determine conditions under which the vertex transition matrix is time-reversal
symmetric. This will raise questions about when general time-reversal symmetric boundary
conditions exist for a Dirac operator on a graph. For the system to be time-reversal symmetric
T must commute with the Hamiltonian D. This forces the mass term in D to vanish. From
now on we consider only the case m = 0 for which γ (k) = 1 and time-reversal symmetry is
possible with two-component spinors.

Applying T to the plane-wave solutions on a bond (4.3) we find

T ψk(x) = −iµ̄

(
1
−i

)
e−ikx + i ¯̂µ

(
1
i

)
eikx . (4.21)

Time-reversing spinors on all the bonds meeting at the vertex i defines new vectors of outgoing
and incoming waves µ→T ,µ←T ,

µ
→

T = i

(
Iwi

0
0 −I(vi−wi)

)
(µ←) µ

←
T = i

(−Iwi
0

0 I(vi−wi)

)
(µ
→

). (4.22)

For the vertex transition matrix to be time-reversal invariant we require

µ
→

T = T
(i)µ

←
T . (4.23)

Using the definition of the vertex transition matrix, µ→ = T
(i)µ← for T

(i) unitary, equation (4.23)
implies

(T(i))T =
(

Iwi
0

0 −I(vi−wi)

)
T

(i)

(−Iwi
0

0 I(vi−wi)

)
. (4.24)

Equation (4.24) is the condition that all vertex transition matrices must satisfy in order that
the system possesses time-reversal symmetry.

Splitting T
(i) into four blocks equation (4.24) is equivalent to

T
(i) =

(
T1 T2

T3 T4

)
=

(−T
T
1 T

T
3

T
T
2 −T

T
4

)
. (4.25)

The components Tbc of the transition matrix T
(i) are thus either symmetric or antisymmetric

according to the alignment of the bonds at the vertex, in the sense that

Tbc = Tcb

c
b

Tbc = −Tcb

c
b or

c
b

This raises a number of problems. Back scattering is not possible in this scheme as Tbb is
identically zero (returning to the same bond always requires antisymmetry). Consequently
it is not possible to quantize graphs containing vertices with valency 1. It is also clear that
the components of T

(i) cannot be invariant under a permutation of the bonds. But it is this
natural physical property imposed by Kottos and Smilansky [16, 17] that allows them to derive
a simple form of the trace formula for the Schrödinger operator on a graph. In fact we may
ask if any graphs exist for which the vertex transition matrices are both unitary and satisfy the



Spectral statistics for the Dirac operator on graphs 2755

time-reversal condition (4.24). There are no examples of T
(i) for vertices with valency 1 and

only a trivial solution for one incoming and one outgoing bond, vi = 2. With vi = 3 there are
again no solutions. The simplest nontrivial example of a transition matrix is for a vertex with
valency 4. In this case, with two incoming and two outgoing bonds, one possible choice of a
time-reversal invariant transition matrix is

T
(i) = 1√

2




0 1 1 0
−1 0 0 1
1 0 0 1
0 1 −1 0


 . (4.26)

Clearly this is both a unitary matrix and has the symmetry and antisymmetry properties
prescribed by (4.25). Physically this would represent strange boundary conditions as a spinor
reaching the vertex would be prevented not only from back scattering but also from scattering
down another of the bonds. However it is still reasonable to ask how closely the spectrum
of a graph quantized with such a vertex transition matrix will follow the GSE prediction. In
the following subsection we investigate one example of a binary graph (i.e. where all vertices
have two incoming and two outgoing bonds).

4.3. Bond scattering matrix

To find the energy levels we must first determine the bond scattering matrix S for the whole
graph from the transition matrices at the vertices. Let us define µ(ij) to be the coefficient of
the plane wave on the bond (ij) travelling in the direction i → j . Then µ(ji) is µ̂(ij) in our
previous notation. The bond scattering matrix S = (S(ij)(lm)) is defined by

S(ij)(lm)(k) = δmiT
(m)

(ij)(lm) eikL(lm) . (4.27)

To scatter from the spinor with coefficient µ(lm) to that with µ(ij) the bonds (lm) and (ij) must
be connected at m. The transition amplitude is then defined by the transition matrix T

(m) at m.
Before the transition the spinor collects a phase propagating along (lm). Equation (4.27) is
equivalent to the description of the scattering matrix as a product S(k) = TD(k) where D(k)

is a diagonal matrix of phases and T is a matrix of transition amplitudes for the whole graph.
As there are two coefficients for the spinors on each bond S is a 2B ×2B matrix. The unitarity
of the vertex transition matrices and the diagonal matrix of phases D(k) ensures that S(k) is
also unitary. Note that the vertex transition matrices T

(m) and hence the bond S-matrix still
depend on the directions assigned to the bonds.

The bond S-matrix S(k) acts on the vector of coefficients µ, which is composed of the
coefficients µ→ and µ← at every vertex and therefore defines the plane wave on the graph. Energy
eigenfunctions correspond to vectors µ where

S(k)µ = µ. (4.28)

The energy eigenvalues then correspond to the values of k for which

|I2B − S(k)| = 0. (4.29)

This quantization condition for the graph is the same as that for the Schrödinger operator, see
[16, 17].

Figure 2 shows the nearest neighbour level spacing statistics for a fully connected pentagon
calculated using the vertex transition matrices (4.26). Directions were assigned to the bonds
to produce two incoming and two outgoing bonds at each vertex. The assignment of T

(i)

to the vertices is still not unique as the elements of T
(i) also vary between bonds with the

same direction. The numerics confirm that, even for this small graph with unusual boundary
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Numerics
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Figure 2. The integrated nearest neighbour spacing distribution I (s) (left) and a histogram of the
spacing distribution p(s) (right) for a fully connected Dirac pentagon, with 35 753 levels. The
inset (left) shows the difference between the numerical results and IGSE(s).

conditions, the energy level statistics correspond well to those of random matrices from the
GSE. We now turn to consider how the quantization of more general graphs can be realized
using two-component spinors and whether there exists a trace formula for the Dirac operator.

4.4. Paired bonds

We expect it should be possible to put a Dirac operator on any (topological) graph while
preserving time-reversal symmetry; and the assignment of elements in the transition matrix
should follow a general scheme independent of the particular bonds to which they correspond.
We saw that difficulties arise due to the fact that, as opposed to the case of a Schrödinger
operator, the Dirac operator is a first-order differential operator, thus breaking the invariance
under x �→ −x. In this section we show that a quantization in terms of a Dirac operator can
be achieved for two-component spinors by replacing each bond of the classical (topological)
graph with a pair of metric bonds one running in each direction.

1

vi +2

vi +1

vi

vi2

2

...

...

Figure 3. An isolated vertex with paired bonds.

We maintain the realization of a two-component Dirac operator as described above,
however, with the constraint that each vertex i has valency 2vi with pairs of directed bonds
meeting at i as indicated in figure 3. The bonds in a pair replace a single bond of the given
topological graph and hence are assigned the same length but run in opposite directions. This
restores the physical symmetry of the problem as all the original bonds are treated equivalently.
Putting plane-wave solutions, equation (4.3), on the bonds we can write an eigenfunction on
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a pair b of bonds as

ψb
k (xb) = µb

α

(
1
i

)
eikxb + µb

β

(
1
−i

)
eikxb + µ̂b

α

(
1
i

)
e−ikxb + µ̂b

β

(
1
−i

)
e−ikxb (4.30)

where xvi+b has been replaced by Lb − xb and the extra phases absorbed into the coefficients.
The coefficients have been labelled α or β according to the type of spinor, characterized by
a lower component i or −i, rather than the bond on which the spinor travels. Now let us
rearrange the coefficients in the vectors µ→ and µ← so that α coefficients are always listed first,

µ
→ =




µ1
α

µ1
β
...


 µ

← =




µ̂1
α

µ̂1
β
...


 . (4.31)

The self-adjoint boundary conditions still define a unitary vertex transition matrix

µ
→ = T

(i)µ
← and (T(i))−1 = (T(i))†. (4.32)

Applying the time-reversal operator (4.20) to the wavefunctions (4.30) we find time-reversed
vectors µ→T ,µ←T ,

µ
→

T = i




µ̂1
β

−µ̂1
α

...


 µ

←
T = i




µ1
β

−µ1
α

...


 . (4.33)

Time-reversal invariance again implies

µ
→

T = T
(i)µ

←
T . (4.34)

Using the definition of the transition matrix (4.32) we obtain the following condition for
time-reversal invariance

(T(i))T =




J −1

. . .

J −1


 T

(i)




J

. . .

J


 (4.35)

where

J :=
(

0 1
−1 0

)
. (4.36)

The form of equation (4.35) is similar to, but not the same as, the definition of a symplectic
matrix.

The vertex transition matrix T
(i) can be divided into 2 × 2 blocks (T(i))bc which relate

incoming spinors on the pair of bonds b to outgoing spinors on the bond pair c. Let

(T(i))bc =
(

r s

v w

)
(4.37)

then time-reversal symmetry implies

(T(i))cb =
(

w −s

−v r

)
(4.38)

or equivalently

(T(i))cb = |(T(i))bc|((T(i))bc)−1. (4.39)
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This suggests both a method of constructing time-reversal symmetric transition matrices and
the form of permutation invariance among the bond pairs to be required. Matrices of this form
can be written as

T
(i) =




u1

. . .

uvi




{
X ⊗

(
1 0
0 1

)}


u−1
1

. . .

u−1
vi


 (4.40)

where X = (xbc) is a symmetric unitary matrix of dimension vi and uj ∈ SU(2). |xbc|2 is the
probability that any incoming state on the classical bond c scatters to any outgoing state on the
classical bond b. We may now choose to implement a physical permutation symmetry between
the bonds of the classical graph by requiring the matrix X to be invariant under permutations
σ ,

X = σXσ−1. (4.41)

Together with the condition that X is unitary this implies

X = eiθ




q − 1 q

. . .

q q − 1


 with q := 1 + eiω

vi

. (4.42)

Unsurprisingly this is similar to the vertex transition matrix for a Schrödinger operator [16, 17]
which is also symmetric unitary and permutation invariant. Here the coefficient ω, which we
can think of parametrizing the boundary conditions, is independent of k. The extra phase eiθ

is not interesting as it corresponds only to an extra k independent phase factor. Adjusting
the parameter ω we see that the Dirac equation also allows both Neumann-like (ω = 0) and
Dirichlet-like (ω = π) boundary conditions. An element ubu

−1
c of SU(2) defines a ‘spinor

rotation’ from the pair of linearly independent two-component spinors incoming on bond c to
the outgoing pair on bond b.

Equations (4.40) and (4.42) define general time-reversal invariant vertex transition
matrices for two-component spinors. The transition amplitudes have a form of permutation
invariance (4.41) and in section 6.1 we see that this allows a simple form for the trace formula
to be derived. With the vertex transition matrix the bond scattering matrix for the whole graph
can be defined as in equation (4.27) with unpaired bonds. The quantization condition (4.29)
is also unchanged, apart from the fact that due to doubling of the number of bonds S(k) now
is a 4B × 4B matrix.

5. The Dirac operator for four-component spinors

Before looking at examples for the two-component spinors on paired bonds we will compare
with the alternative construction of the Dirac operator acting on four-component spinors.
Therefore, we now consider again directed graphs with B unpaired bonds. In this case the
time-independent Dirac equation reads

−ih̄cα
dψ

dx
+ mc2βψ = Eψ (5.1)

where we choose α and β as in (3.2)

α =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


 β =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (5.2)
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We could alternatively have chosen either of the other α matrices of the standard representation
for the Dirac operator in three dimensions or used another representation entirely. The choice
here simplifies the working.

Eigenspinors of D are again plane waves. For positive energy they are of the form

ψb
k (xb) = µb

α




1
0
0

iγ (k)


 eikxb + µb

β




0
1

−iγ (k)

0


 eikxb

+ µ̂b
α




1
0
0

−iγ (k)


 e−ikxb + µ̂b

β




0
1

iγ (k)

0


 e−ikxb (5.3)

with k > 0. The dispersion relation and γ (k) are as in (4.4). These four plane-wave solutions
differ from the two-component case although they are labelled with coefficients µb

α, etc in
analogy with the two-component solutions on pairs of bonds. The wavefunction ψb(xb) is a
function on a single directed bond of a metric graph. We note that, in contrast to the pairs
of two-component wavefunctions (4.30), ψb(xb) is not invariant under a change in the bond
direction xb �→ −xb.

5.1. Self-adjoint realizations on graphs

The construction of self-adjoint realizations of the Dirac operator on the graph proceeds in
complete analogy to the case of two-component spinors. We therefore must look for maximal
closed subspaces of

B⊕
b=1

W2,1([0, Lb]) ⊗ C
4 (5.4)

on which the skew-Hermitian form

�(φ,ψ) = 〈Dφ,ψ〉 − 〈φ,Dψ〉 (5.5)

vanishes. In order to convert the problem to the boundary values of the spinors we integrate
by parts and express � as a complex symplectic form,

�(φ,ψ) = ((φ+)†(φ−)†)

(
0 I4B

−I4B 0

) (
ψ+

ψ−

)
(5.6)

on C
8B . Here we have defined

ψ+ := (
ψ1

1 (0), . . . , ψB
1 (0), ψ1

2 (0), . . . , ψB
2 (0),

ψ1
1 (L1), . . . , ψ

B
1 (LB),ψ1

2 (L1), . . . , ψ
B
2 (LB)

)T

(5.7)
ψ− := (−ψ1

4 (0), . . . ,−ψB
4 (0), ψ1

3 (0), . . . , ψB
3 (0),

ψ1
4 (L1), . . . , ψ

B
4 (LB),−ψ1

3 (L1), . . . ,−ψB
3 (LB)

)T
.

The map from the spinors on the graph to the vectors ψ+ and ψ− mixes the first and the second
components of the spinors in ψ+ and the third and the fourth in ψ−. Identifying maximally
isotropic subspaces of C

8B with respect to �, equation (5.6), the argument proceeds as for the
two-component spinors. Such a linear subspace is defined by

Aψ+ + Bψ− = 0 (5.8)
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with 4B×4B matrices A and B, and is maximal isotropic if rank(A, B) = 4B and AB
† = BA

†.
Under such conditions the Dirac operator on (5.4) with boundary conditions as prescribed by
(5.8) is self-adjoint.

For eigenfunctions of the Dirac operator, i.e. plane-wave solutions (5.3) on each of the
bonds, we define vectors of incoming and outgoing coefficients at a single vertex, for example
figure 1,

µ
→ =




µ1
α

µ1
β

...

µwi
α

µ
wi

β

µ̂wi+1
α e−ikLwi +1

µ̂
wi+1
β e−ikLwi +1

...

µ̂vi
α e−ikLvi

µ̂
vi

β e−ikLvi




µ
← =




µ̂1
α

µ̂1
β

...

µ̂wi
α

µ̂
wi

β

µwi+1
α eikLwi +1

µ
wi+1
β eikLwi +1

...

µvi
α eikLvi

µ
vi

β eikLvi




. (5.9)

Then using boundary conditions defined at the vertex by matrices A
(i) and B

(i) we find as in
the two-component case

µ
→ = −(A(i) − iγ (k)B(i))−1(A(i) + iγ (k)B(i))µ

←
. (5.10)

The vertex transition matrix

T
(i) := −(A(i) − iγ (k)B(i))−1(A(i) + iγ (k)B(i)) (5.11)

is unitary due to the condition A
(i)

B
(i)† = B

(i)
A

(i)† that guarantees current conservation at the
vertex.

5.2. Time-reversal symmetry

We now turn to see what time-reversal invariance implies for the vertex transition matrix. The
time-reversal operator in the standard representation is

T = −




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


K. (5.12)

This commutes with the Hamiltonian on the bonds so there is no requirement that the mass be
zero with four-component spinors. Applying T to the wavefunction at the vertex i we define
new vectors from the coefficients of outgoing and incoming waves, µ→T ,µ←T ,

µ
→

T = i




J

. . .

J


 (µ←) µ

←
T = i




J

. . .

J


 (µ

→
). (5.13)

For time-reversal invariance we require

µ
→

T = T
(i)µ

←
T . (5.14)
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Using the unitarity of T
(i), time-reversal symmetry (5.14) is equivalent to demanding that the

transition matrix satisfy

(T(i))T =




J −1

. . .

J −1


 T

(i)




J

. . .

J


 . (5.15)

This is the same as condition (4.35) derived for two-component spinors on paired bonds. The
general form of transition matrices (4.40) proposed for the spinors on paired bonds will hence
also hold for four-component spinors on a directed graph. Furthermore with four-component
spinors the mass is no longer required to be zero. Instead any T

(i) which can be constructed
from the boundary conditions according to equation (5.11) and which is also time-reversal
invariant is available.

6. Energy level statistics

To verify the conjecture of Bohigas et al [6] in the case of the time-reversal invariant Dirac
operator on a graph we examine the energy level statistics through both numerical calculations
and directly via the trace formula.

From now on we consider only boundary conditions with the form of general vertex
transition matrices defined in equations (4.40) and (4.42). This still leaves a range of
boundary conditions parametrized by ω. Of particular interest are the Neumann-like boundary
conditions, ω = 0. These are the boundary conditions most often studied for the Schrödinger
operator on the graph. The vertex transition matrix T

(i) for Neumann boundary conditions is
generated by the matrices

A
(i) = U(i)







1 −1 0 0 . . .

0 1 −1 0 . . .

. . .
. . .

0 . . . 0 1 −1
0 . . . 0 0 0


 ⊗

(
1 0
0 1

)



(U(i))−1 (6.1)

B
(i) = U(i)







0 0 . . . 0
...

...
...

0 0 . . . 0
1 1 . . . 1


 ⊗

(
1 0
0 1

)



(U(i))−1 (6.2)

where U(i) is a block diagonal matrix of elements of SU(2),

U(i) =




u1

. . .

uvi


 . (6.3)

Substituting these boundary conditions into equation (5.11) and using some algebra we obtain
the vertex transition matrix

T
(i) = U(i)







2
vi

− 1 2
vi

. . .
2
vi

2
vi

− 1


 ⊗

(
1 0
0 1

)
 (U(i))−1. (6.4)



2762 J Bolte and J Harrison

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

I(s)

s

Numerics
GOE
GUE

GSE
GUE
GOE

Numerics

∆

GSE

I(s)

s

s

p(s)

32.521.510.50

1.2

1

0.8

0.6

0.4

0.2

0

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2 2.5

Figure 4. The integrated nearest neighbour spacing distribution I (s) (left) and a histogram of
the spacing distribution p(s) (right) for a Dirac operator with Neumann boundary conditions on a
fully connected square, 24 234 levels. The inset (left) shows the difference between the numerical
results and IGSE(s).
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Figure 5. The integrated nearest neighbour spacing distribution I (s) (left) and a histogram of the
spacing distribution p(s) (right) for a Dirac operator with Neumann boundary conditions on a fully
connected square, 25 275 levels. Time-reversal symmetry has been broken with a magnetic vector
potential. The inset (left) shows the difference between the numerical results and IGUE(s).

T
(i) is independent of the function γ (k) determined by the mass. With this form of the

Neumann boundary conditions there is no need to specify the mass or whether the system is
represented by paired two-component spinors or four-component spinors on a directed graph.

Figure 4 shows the nearest neighbour spacing statistics for a fully connected square with
Neumann boundary conditions, the vertex transition matrix defined in equation (6.4). The
three elements ub ∈ SU(2) at a vertex were chosen as

ub = exp
(
iθbσnb

)
(6.5)

where σnb
is a Pauli matrix. The parameters θb were then selected randomly at each vertex.

To obtain good agreement with the symplectic random matrix ensemble the parameters were
also picked such that the elements ub generated at the vertices were all sufficiently different.
Deviations from the GSE behaviour become apparent if the elements of SU(2) at one vertex
are similar to those at another, i.e. θ l

b ≈ θm
c .

Introducing a magnetic vector potential Ab on the bonds breaks time-reversal symmetry.
The transition elements for the S-matrix remain the same but a plane wave propagating down
a bond (i → j) picks up an extra phase exp(iA(ij)L(ij)) where we know that L(ji) = L(ij)

but A(ji) = −A(ij). Figure 5 shows that for the Dirac operator on a fully connected square
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breaking the time-reversal invariance in this way produces energy level statistics such as those
of random GUE matrices as expected. For the Dirac operator we used Neumann boundary
conditions and random elements of SU(2) chosen as previously.

6.1. Trace formula

A trace formula for the Laplacian on a graph was first produced by Roth [18]. We derive
the trace formula for the density of states of a system with Neumann boundary conditions,
following the approach developed by Kottos and Smilansky [16, 17] for the Schrödinger
operator. The vertex transition matrices for such a system were defined in equation (6.4).
The main tool in setting up the trace formula is the bond scattering matrix S(k) defined in
equation (4.27).

Consider the density of states for the wave number k. It is an infinite series of delta
functions located at k = kn corresponding to eigenvalues En of the Dirac operator. The
eigenvalues are counted according to their multiplicity. Wave numbers kn are values of k for
which the function

ζ(k) := |I4B − S(k)| (6.6)

is zero. Diagonalizing S(k) we can write ζ(k) in terms of the eigenvalues eiφj (k) of S(k),

|I4B − S(k)| =
4B∏
j=1

(1 − eiφj (k)) = 24B |S(k)| 1
2

4B∏
j=1

sin

(
φj (k)

2

)
. (6.7)

ζ(k) is complex with the phase contained in the term |S(k)| 1
2 . Multiplying by |S(k)|− 1

2 we
define a real function whose zeros are also the zeros of ζ(k). Then the density of states can be
written

d(k) =
∞∑

n=1

δ(k − kn) = − 1

π
lim
ε→0

Im
d

dk
log(|I4B − S(k + iε)||S(k + iε)|− 1

2 ). (6.8)

The expression (6.8) factorizes into a sum of two terms. The smooth part of the spectral
density is

dsmth(k) := − 1

π
lim
ε→0

Im
d

dk
log(|S(k + iε)|− 1

2 )

= 1

2π
Im

d

dk
log(ei4kL)

= 2L

π
, (6.9)

where L is the total length of the graph

L =
B∑

b=1

Lb.

(Note that in our definition of L the length of each bond of the classical graph is counted only
once although the S-matrix can be considered either as scattering between two-component
spinors on paired bonds or four-component spinors on a directed graph.)

The oscillating part of the spectral density is

dosc(k) := − 1

π
lim
ε→0

Im
d

dk
log(|I4B − S(k + iε)|). (6.10)
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The logarithm can be expanded as a sum of powers of the trace of S(k),

log(|I4B − S(k)|) = −
∞∑

n=1

1

n
tr S

n(k). (6.11)

As in the case of the Schrödinger operator on a graph we can now write the trace of powers of
S(k) as a sum over periodic orbits on the graph. However, for the Dirac operator, the transition
amplitudes between classical bonds are specified by the 2 × 2 matrices T

bc,

tr S
n(k) = tr

∑
b1,...,bn

eikLb1 T
b1b2 eikLb2 T

b2b3 · · · eikLbn T
bnb1 . (6.12)

Thus tr S
n(k) �= 0 implies that the sequence (b1b2, . . . , bn) of bonds labels a periodic orbit on

the graph. For a single periodic orbit p which passes through n vertices

tr(Tb1b2 · · · Tbnb1) = Ap tr(dp) eiπµp . (6.13)

In this formula Ap is a (positive) stability factor, the product of the absolute values of the
transition amplitudes for spinor pairs round the orbit

Ap :=
µp∏
s=1

(
1 − 2

vs

) νp∏
t=1

(
2

vt

)
(6.14)

where µp is the number of cases of back scattering from vertices with vs > 2 and n = µp +νp.
An overall sign is collected in the factor eiπµp and dp is the product of the elements of SU(2)

that rotate between the two types of spinors on the periodic orbit

dp := ub1b2ub2b3 · · ·ubnb1 . (6.15)

The spin rotations ubibi+1 := ubi+1u
−1
bi

are composed of SU(2)-blocks comprising the matrix
U(i), see equation (6.3), attached to the ith vertex visited along the periodic orbit.

Combining these results

tr S
n(k) = n

∑
p∈Pn

Ap eiπµp tr(dp) eiklp (6.16)

where the sum is over the set Pn of periodic orbits of n bonds and lp is the metric length of
the orbit p. The factor n counts cyclic permutations of an orbit. Substituting equations (6.16)
and (6.11) into equation (6.10) we find the oscillating part of the density of states. Adding the
result for the smooth part (6.9) we obtain

d(k) = 2L

π
+

1

π

∑
p

lp

rp

Ap eiπµp tr(dp) cos(klp). (6.17)

The sum is over all periodic orbits. If an orbit p consists of rp repetitions of a shorter orbit
then only the length of the primitive orbit lp/rp is included in the formula. This trace formula
provides an exact relation for the density of states of the Dirac operator on a graph with
Neumann boundary conditions as a sum over the classical periodic orbits.

Equation (6.17) for the density of states can be compared both to the form derived for the
Schrödinger operator on a graph [16–18] and to previous semiclassical results for systems with
spin [7, 8, 14]. Most terms in our density of states are the same as those derived by Kottos and
Smilansky for the Schrödinger operator [16, 17]. The additional term for the Dirac operator
is the trace of dp. This can be thought of as an additional weight factor which depends on the
transformation of the spinor pairs around the orbit.

Comparing our trace formula to the general semiclassical form for the Dirac operator
[7, 8], we see that here the Dirac operator also produces a trace over an element of SU(2)
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associated with the change in spin around the orbit. This weight factor can also be interpreted
in terms of an effective rotation angle of a classical spin vector transported along the periodic
orbit according to the equation of Thomas precession. That the results agree is not unexpected.
The Dirac operator on a graph however does not require a semiclassical approximation to derive
the density of states. Finally we also note the similarity with the trace formula for a different
system, the quantum cat map with spin, derived by Keppeler et al [14]. In this case the
quantum map is an equivalent to the Pauli operator with spin 1/2. In their semiclassical trace
formula the presence of spin also appears as a trace of an SU(2) matrix which defines the spin
transport around a periodic orbit.

6.2. Form factor

From the trace formula we derive the spectral two-point form factor for the Dirac operator
on quantum graphs. The form factor is an energy level statistic that is widely studied for
classically chaotic quantum systems and in particular for the Schrödinger operator on graphs,
see [2–4, 16, 17,]. We see that our form factor agrees with the general semiclassical result
for systems with spin [9], and making the diagonal approximation the form factor for low τ is
consistent with the GSE prediction from random matrix theory.

We derive the form factor for the energy level spacings. This is the Fourier transform of
the two-point correlation function itself defined as

R2(x) :=
( π

2L

)2
lim

�→∞
1

�

∫ �

0
d(k)d

(
k − πx

L

)
dk − 1. (6.18)

In defining the two-point correlation function we have rescaled the spectrum dividing by the
mean level spacing 2L/π , see equation (6.9). For systems with half-integer spin and time-
reversal invariance the eigenvalues kn come in pairs (Kramers’ degeneracy). We consider the
spectrum xn where this degeneracy has been lifted,each pair of eigenvalues being replaced with
a single representative. The mean spacing of the xn distribution is therefore L/π . Substituting
the trace formula for the density of states (6.17) into the definition of R2(x) and carrying out
the integral we find

R2(x) = 1

2(2L)2

∑
p,q

lplq

rprq

ApAq eiπ(µp+µq) tr(dp) tr(dq) cos

(
πxlq

L

)
δlp,lq . (6.19)

The two-point form factor K2(τ ) is the Fourier transform of the two-point correlation
function

K2(τ ) :=
∫ ∞

−∞
R2(x) e2π ixτ dx (6.20)

which is even in τ . Taking the Fourier transform of R2(x) term-wise we obtain

K2(τ ) = 1

4(2L)2

∑
p,q

lplq

rprq

ApAq eiπ(µp+µq) tr(dp) tr(dq)δ

(
τ − lq

2L

)
δlp,lq (6.21)

for τ positive.
The eigenvalue distribution of random matrices averaged over the GSE has a two-point

form factor

KGSE
2 (τ ) =

{ 1
2 |τ | − 1

4 |τ | log |1 − |τ || for |τ | � 2
1 for |τ | � 2

. (6.22)

Making similar assumptions to those often used in the Schrödinger case we will see that
K2(τ ) ∼ |τ |/2 for |τ | → 0. This agrees with the random matrix theory prediction of
equation (6.22).
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The analysis of the form factor based on the trace formula requires us to take a semiclassical
limit. The latter can be characterized by going to some regime with increasing mean spectral
density. According to the relation (6.9) this corresponds to increasing the total length L of
the bonds. We realize this limit in passing to graphs with an increasing number B of bonds
while keeping the mean bond length L̄ := L/B constant. As τ → 0 the form factor should
be dominated by the diagonal form factor introduced by Berry [5],

K
diag
2 (τ ) := 1

4(2L)2

∑
p

(
lp

rp

)2 {
A2

p (tr(dp))2 + ApAp̄ tr(dp) tr(dp̄)
}
δ

(
τ − lp

2L

)
(6.23)

since in this limit only correlations for an orbit p with itself and with its time-reversed partner p̄

are relevant. Combined with the semiclassical limit we now have to consider L → ∞, τ → 0
with Lτ → ∞.

Comparing p and p̄ we see that Ap = Ap̄ and dp̄ = d−1
p . For elements of SU(2)

tr(d−1) = tr(d),

K
diag
2 (τ ) = 1

2(2L)2

∑
p

(
lp

rp

)2

A2
p (tr(dp))2δ

(
τ − lp

2L

)
. (6.24)

In the limit Lτ → ∞ it is the long orbits which dominate the sum and for these the proportion
which are repetitions of shorter orbits tends to zero so we ignore periodic orbits with rp �= 1.
Breaking the sum on periodic orbits into a sum on sets Pn of orbits of n bonds and using
lp ≈ nL̄,

K
diag
2 (τ ) ≈ 1

2

∑
n

( n

2B

)2
δ
(
τ − n

2B

) ∑
p∈Pn

A2
p (tr(dp))2. (6.25)

We can regard both Ap and dp as functions of p. The elements of SU(2) in dp were
selected randomly, according to Haar measure, so Ap and dp are uncorrelated. If the number
of periodic orbits of length n is |Pn| then for large n

1

|Pn|
∑
p∈Pn

A2
p (tr(dp))2 ∼


 1

|Pn|
∑
p∈Pn

A2
p





 1

|Pn|
∑
p∈Pn

(tr(dp))2


 . (6.26)

We now consider the two averages separately. The sum over Pn of A2
p can be evaluated in

the limit n → ∞ using the classical ergodicity of the graph. Classical motion on the graph
is determined by the doubly stochastic matrix M = (Mbc), with the magnitude squared of the
transition amplitudes between the bonds as entries

Mbc := |Xbc|2. (6.27)

By using X to define the Markov chain (and not T) the classical system that corresponds to a
graph quantized with the Dirac operator is equivalent to that of the Schrödinger quantization.
The vector ρ of probabilities assigned to bonds on the graph is 2B-dimensional and independent
of spin. For a connected graph a given pair (b, c) of bonds can be linked by a path of q bonds.
Thus (Mq)bc > 0 such that M is an irreducible matrix and the Markov chain is ergodic. If, in
addition, no eigenvalue other than 1 lies on the unit circle it is mixing which implies

lim
n→∞(Mn)bc = 1

2B
. (6.28)

The trace of Mn therefore approaches unity, but the trace can also be expressed as a sum over
the periodic orbits

trMn = n
∑
p∈Pn

A2
p. (6.29)
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Figure 6. Plots of an averaged spectral form factor from the fully connected square and the GSE
prediction. The inset shows the result for the form factor without averaging.

The factor n counts the cyclic permutations of the orbit. Thus in the limit of long orbits we
may replace

∑
p∈Pn

A2
p with 1/n if the Markov process is mixing. It should be noted that

while we have used the mixing property of the classical motion on the graph without spin
(defined by the matrices X) it is equivalent to the same property of a 4B-dimensional matrix
M defined from T. In this case Mbc = |Tbc|2 and each spinor is treated separately. We defined
the mixing property of the classical graph using X to make the connection with the amplitudes
Ap clear.

In the limit of n → ∞ we replace the average over Pn of (tr(dp))2 with the integral over
SU(2) with Haar measure. Evaluating the integral directly we obtain

lim
n→∞

1

|Pn|
∑
p∈Pn

(tr(dp))2 =
∫

SU(2)

(tr(u))2 du = 1. (6.30)

Substituting these results into the diagonal approximation for the form factor (6.25) we find

K
diag
2 (τ ) ∼ 1

2

∑
n

1

2B

n

2B
δ
(
τ − n

2B

)
∼ 1

2
|τ | (6.31)

in the combined limit L → ∞, τ → 0 with Lτ → ∞. This is in agreement with the GSE
prediction for small |τ |. The validity of the assumptions made in the argument is of less
consequence than that they are of the same type used in other semiclassical approximations,
particularly for the Schrödinger operator on a graph. The key additional assumption made
to include the spin evolution was equation (6.26), taking the elements dp of SU(2) to be
uncorrelated with the weights Ap of the orbit.

Figure 6 compares a numerical calculation of the form factor with the GSE prediction
(6.22). As the form factor takes the form of a distribution, see equation (6.21), meaningful
results are only obtained when it is averaged with a test function. For simplicity we use a
function which is 1 in the region τ ± 0.1 and zero outside. The theoretical prediction for the
GSE form factor can also be averaged in the same way. As the computation of the form factor
leads to a delta function at τ = 0 in the limit of the number of levels going to infinity the first
few values of τ are omitted in the numerical calculation.
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Figure 7. A graph realized as a network of wires embedded in 3D.

7. Gedanken experiment

It is common when studying graphs, in this context, to describe them as an idealized model
of a ‘typical’ quantum system. When compared to quantum maps or systems of constant
negative curvature the case is certainly strong. However in introducing the Dirac operator to
graphs we may have inadvertently weakened the argument and that is what we seek to correct
here.

Let us think of the classical graph that we wish to quantize as a network or web of wires
set up in our ideal laboratory, see figure 7. To quantize this system using the Dirac operator we
must introduce pairs of spinors propagating in both directions along the wires. At the vertices
changes in the composition of the spinor pairs are described by elements ubc ∈ SU(2),

c labels the incoming classical bond and b the outgoing bond. These elements ubc necessarily
depend on the pair of wires under consideration, ubc �= ude. This is not a feature of the
usual Schrödinger quantization [16, 17] where all wires meeting at a vertex are treated
equivalently. It is therefore fair to ask whether our model web could really distinguish bonds in
such a way.

One simple geometric argument connecting the matrices ubc to our experimental network
is provided by the double covering map f : SU(2) → SO(3). Let R(θbc) ∈ SO(3) describe
the rotation from bond c to b at a vertex. Setting ubc = f −1(R(θbc)), with some choice of
the branch f −1(SO(3)), we define a set of elements of SU(2) from the architecture of the
network. This construction is time-reversal symmetric as ucb = u−1

bc . (To write this in the
form used for the vertex boundary conditions (6.4) choose a reference direction at each vertex
and take the v elements uc to be f −1(R(θc)) where R(θc) rotates from the reference direction
to bond c.) We have not attempted to provide a physical justification for this transformation
of spinor pairs at the vertices. Our formulation rather shows that the extent to which bonds
must be distinguished when quantizing a graph with the Dirac operator remains consistent
with the picture of the graph as a simple ideal quantum system. There is sufficient geometrical
information in the structure of a graph embedded in three dimensions to determine rotations
of the spinors at the vertices.
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